# Leachability of cokes from Syncrude stockpiles

Five samples of coke taken from Syncrude stockpiles were evaluated according to the Toxicity Characteristics Leaching Procedure to determine content of regulated elements, such as arsenic, barium, cadmium, chromium, lead, mercury, selenium and silver as well as volatile organics. One sample of drainage water from the stockpile was also evaluated. For all samples, contents of the elements and volatile organics were lower than detection limits of the analyzer confirming that the cokes are virtually non-leachable. The increased severity, i.e., leaching at pH=2 and pH=4 had little effect on leachability of regulated species and volatile organics.

yncrude Canada Ltd. in Fort McMurray, Alberta operates the largest synthetic crude oil plant in the world, converting the Athabasca bitumen to Syncrude Sweet Blend crude (1). As part of this operation, about 2,000 tonne/day of the coke are being stock-

piled in proximity to the plant. After many years of the operation, the stockpiled coke represents a significant amount of a high heating value solid fuel (2).

At present, the utilization of the coke to produce hydrogen, electricity and steam for plant and local consumption cannot compete with the natural gas which is available at much lower cost, or a high heating value gas produced as a byproduct in the plant. However, once economics are attractive,

combustion and gasification appear to be the technologies of choice for coke utilization. In the meantime, it is the primary objective of Syncrude Canada Ltd. to ensure that the stockpiles of coke do not pose any environmental hazards.

<sup>1</sup>Syncrude Canada Ltd., Edmonton Research Centre, 9421-17 Avenue, Edmonton, Alberta, Canada T6N 1H4 <sup>2</sup>Natural Resources Canada, Energy Research Laboratories, c/o 555 Booth Street Ottawa, Ontario, Canada, K1A OG1

In this regard, it is essential to ensure that the leachability of the Environmental Protection Agency (EPA) designated priority inorganic contaminants, as well as that of the volatile polynuclear aromatics and other organics, is within the acceptable limits. Thus, the long term effects of the stockpiles on surface and groundwaters should be clearly understood. This requires a sufficient database established according to the methods and procedures accepted by the environmental authorities. Such methods were used for evaluation of leachability of the coke samples from Syncrude stockpiles. For one sample, the leachability was performed at different pH levels which were adjusted by sulphuric acid. The aim was to simulate potential leaching from the stockpile under extremely severe leaching conditions.

The EPA's Toxicity Characteristics Leaching Procedure (TCLP) was used for the coke evaluations. This method determines the leachability of solid residues and the mobility of both organic and inorganic contaminants present in liquid, solid and multiphase systems. The method is considdian Electrical Association (4) in Canada and the International Energy Agency (5) published numerous studies on environmental aspects of solid and liquid wastes from power plants. The National Petroleum Refiner Association (6) in the USA has focused attention on hazardous wastes generated by the refining industry. The Canadian refining industry is carefully monitoring all related developments as well. The information on this subject is extensive and beyond the scope of this study.

In Canada, regulations exist related to the generation, storage and transportation of solid wastes (7). These solid wastes have to be assessed for their content of inorganic and organic pollutants. For example, utilities have to satisfy these regulations for bottom and fly ashes from coal combustion. In the US, hazardous wastes are regulated by the "Toxicity Characteristic" rule and administered by the EPA. It states that a solid waste exhibits the characteristic of toxicity if, when using the approved methods, the extract from a representative sample of the waste contains any of the regulated contaminants at the con-

centration equal to or greater than the respective regulatory level. The list of the EPA regulatory contaminants can be found in the EPA Federal Register (March 29, 1990). The EPA sets all regulatory levels for hazardous chemicals on a health-based concentration threshold and a dilution attenuation factor. For inorganic priority elements, these levels are shown in Table 1.

The concentration threshold identified as the Chronic Toxicity Reference

Level (CTRL) indicates how much of the chemical adversely affects human health while the dilution/attenuation factor indicates how easily the chemical could leach into ground water. However, it is established that by the time the chemical reaches the ground water, it will be diluted by at least a factor of 100. Thus, the levels set by the "Toxicity Characteristic" rule were determined by multiplying the health-based number by a dilution/attenuation factor of 100.



During fluid coking operation in Syncrude plant, schematics of which are



ered representative of the situation in a solid waste landfill. It is generally accepted that TCLP method is adequate for indicating the potential of landfill wastes to pose hazards if disposed improperly. The method has been adapted by some other countries.

**Environmental Regulations** 

Extensive efforts have been made in all industrialized countries to develop and maintain regulations and laws to control handling, transportation, storage and disposal of the wastes generated by various industrial processes. For example, the Electric Power Research Institute (3) in the USA, the Cana-

Table 1: Toxicity characteristic constituents and regulatory levels.

| Constituent | Chronic toxicity reference level (ppm) | Regulatory<br>level<br>(ppm) |  |  |
|-------------|----------------------------------------|------------------------------|--|--|
| Arsenic     | 0.05                                   | 5.0                          |  |  |
| Barium      | 1.0                                    | 100.0                        |  |  |
| Cadmium     | 0.01                                   | 1.0                          |  |  |
| Chromium    | 0.05                                   | 5.0                          |  |  |
| Lead        | 0.05                                   | 5.0                          |  |  |
| Mercury     | 0.002                                  | 0.2                          |  |  |
| Selenium    | 0.01                                   | 1.0                          |  |  |
| Silver      | 0.05                                   | 5.0                          |  |  |

shown in Fig. 1, bitumen previously separated from oil sands using the hot water separation process, is sprayed into the fluidized bed of the hot coke in the coker reactor. Part of the coke is being steam stripped and continuously withdrawn from the coker reactor and transferred to the burner for partial combustion.

As a result of combustion, the temperature of the coke is increased. The hot coke is then transferred back to the coker reactor as the source of heat for coking reactions. About 2000 tonne/day of the coke is being continuously withdrawn from the burner and transferred to the stockpiles. It can be estimated from the flow rates of the coke streams that most of coke particles will travel many times between the coker and the burner. The prolonged exposure of coke particles at these temperatures will result in the formation of graphite like structures. Such structures are known to have a low reactivity. Thus, it was observed that ignition of the coke particles occurred above 400 °C compared with about 250 °C for medium reactive coals (8). This suggests that self-ignition of Syncrude coke in the stockpiles can be ruled out completely.

It is also believed that metal-containing compounds in the coke are buried in the carbon matrix in such a way that they cannot be accessible by water. This ensures low leachability of the metals during stockpiling. Syncrude operates five coke cells of which #1 to 4 are filled and #5 is being currently filled. It is anticipated that elemental sulphur, which is another by-product of the Syncrude operation, could be stockpiled on top of coke cells in the future.

## EXPERIMENTAL Coke samples

The coke samples were taken from five stockpiles, numbered 1 to 5, in proximity to the Syncrude plant. Proximate, ultimate and ash analyses of the samples are shown in Table 2, where numbers in brackets indicate years of the coke stockpiling. One sample of drainage water, taken from the coke cell #4, was also submitted for the evaluations.

#### Description of TCLP

All details of the method are given in the Federal Register Part II; EPA 40 CFR 261 et al. "Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Toxicity Characteristics Revisions;

Final Rule. In the present work, representative samples were taken from bulk samples in accordance with RCRA guidelines using "Test Method for Evaluating Solid Waste" (SW-846). The Method 1311 TCLP of the Federal Register was used for the sample

apparatus. The resulting slurry was filtered using a Millipore 142 mm Hazardous Waste holder, containing a glass fibre filter (Nucleopore GFF, nominal pore size 0.7 µm). The TCLP extracts were treated according to the RCRA SW-846 guidelines.



preparation. A preliminary evaluation, carried out on a 5 g sub-sample of each coke confirmed that sodium acetate is the most suitable extraction liquid. To simulate severe leaching conditions, two diluted H<sub>2</sub>SO<sub>4</sub> extraction solutions having pH=2 and pH=4, were used. Subsequently, 100 g of each coke was extracted for 18 h in a rotary agitation

#### ANALYSIS OF EXTRACTS Inorganic contaminants

SW-846 method 3020 was used for acid digestion of the extracts for metal analysis by ICP-AES (Jarred Ash model 9000 simultaneous spectrometer). In addition to the "Toxicity Characteristic" rule regulated metals such as Ag, As, Hg, Se, Ba, Cd, Cr and

| Table 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Analysis     | of Syncrude  | e cokes fro  | m stockpile | s.           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|-------------|--------------|
| Coke #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1            | 2            | 3            | 4           | 5            |
| Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (79/80)      | (80/82)      | (82/83)      | (83/85)     | (85-present) |
| Proximate, wt. %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,            | ,,           | (/           | (00,00)     | (oo procent) |
| Moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.44         | 0.60         | 0.50         | 0.69        | 0.25         |
| Ash                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.40         | 7.21         | 5.18         | 7.52        | 4.81         |
| Volatiles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.85         | 5.11         | 6.23         | 6.10        | 4.99         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 0            | 0.20         | 0.10        | 4.00         |
| Fixed carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 89.31        | 87.08        | 88.09        | 85.69       | 89.95        |
| Ultimate, wt. %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |              |              |             | 00.00        |
| Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 82.73        | 80.73        | 81.80        | 80.94       | 83.74        |
| Hydrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.72         | 1.63         | 1.66         | 1.56        | 1.77         |
| Nitrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.75         | 1.70         | 1.98         | 1.73        | 2.03         |
| Sulphur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.78         | 6.63         | 6.84         | 6.15        | 6.52         |
| Oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.18         | 1.50         | 2.04         | 1.41        | 0.88         |
| Ash composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |              |              |             |              |
| SiO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38.80        | 50.06        | 41.60        | 41.26       | 37.64        |
| $Al_2O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24.35        | 20.94        | 24.22        | 24.94       | 24.23        |
| Fe <sub>-</sub> O <sub>-</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.72         | 8.18         | 9.26         | 12.14       | 11.42        |
| TiO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.64         | 2.86         | 3.25         | 4.84        | 4.63         |
| $P_2O_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.25         | 0.21         | 0.23         | 0.35        | 0.40         |
| CaO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.26         | 2.58         | 4.20         | 1.63        | 2.94         |
| MgO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.62         | 1.29         | 1.44         | 1.40        | 1.46         |
| SO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.59         | 2.73         | 2.65         | 1.87        | 2.88         |
| Na <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.51         | 1.17         | 1.57         | 1.16        | 1.67         |
| K₂Ŏ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.83         | 1.78         | 1.83         | 1.93        | 1.72         |
| BaO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.20         | 0.15         | 0.07         | 0.14        | 0.09         |
| SrO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.11         | 0.06         | 0.09         | 0.06        | 0.11         |
| V <sub>2</sub> O <sub>5</sub><br>NiO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.46         | 3.20         | 4.86         | 3.21        | 4.94         |
| MnO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.08<br>0.26 | 0.80<br>0.21 | 1.16         | 0.82        | 1.24         |
| y age of the control | 0.26         | 0.21         | 0.25<br>0.08 | 0.29        | 0.27         |
| Cr <sub>2</sub> O <sub>3</sub><br>LOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.90         | 2.30         | 1.82         | 0.08        | 0.09         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |              |              | 2.50        | 2.62         |
| SUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 98.66        | 98.58        | 98.57        | 98.63       | 98.35        |

| Table 3 Content of elements in cokes (ppm). |              |              |              |              |           |  |  |
|---------------------------------------------|--------------|--------------|--------------|--------------|-----------|--|--|
| COKE#                                       | 1            | 2            | 3            | 4            | 5         |  |  |
| Elements                                    |              |              |              |              |           |  |  |
| Arsenic                                     | 18           | 10           | 10           | 14           | 14        |  |  |
| Barium                                      | 61           | 48           | 38           | 73           | 46        |  |  |
| Cadmium                                     | 0.05         | 0.06         | 0.05         | 0.08         | 0.05      |  |  |
| Chromium                                    | 19           | 20           | 18           | 25           | 18        |  |  |
| Lead                                        | 11           | 11           | 11           | 15           | 12        |  |  |
| Mercury                                     | (0.006)      | (0.006)      | (0.006)      | (0.006)      | (0.006)   |  |  |
| Selenium                                    | 1.5          | 1.3          | 1.7          | 1.9          | 1.3       |  |  |
| Silver                                      | (1.0)        | (1.0)        | (1.0)        | (1.0)        | (1.0)     |  |  |
| Beryllium                                   | 0.5          | 0.5          | 0.4          | 0.7          | 0.5       |  |  |
| Boron                                       | 12           | 12           | 10           | 18           | 11        |  |  |
| Calcium                                     | 1892         | 1486         | 1657         | 941          | 1092      |  |  |
| Cobalt                                      | 14           | 13           | 13           | 17           | 12        |  |  |
| Copper                                      | 10           | 9            | 8            | 19           | 12        |  |  |
| Iron                                        | 4138         | 4396         | 3538         | 6721         | 4095      |  |  |
| Magnesium                                   | 603          | 619          | 497          | 698          | 456       |  |  |
| Manganese                                   | 131          | 132          | 111          | 194          | 111       |  |  |
| Molybdenum                                  | 73           | 66           | 66           | 102          | 88        |  |  |
| Nickel                                      | 517          | 475          | 496          | 520          | 498       |  |  |
| Phosphorus                                  | 93           | 86           | 75           | 136          | 94<br>768 |  |  |
| Potassium                                   | 1011         | 1204         | 894          | 1358         |           |  |  |
| Sodium                                      | 703          | 698<br>47    | 568<br>50    | 699<br>51    | 625<br>57 |  |  |
| Strontium                                   | 65           |              |              |              | (26)      |  |  |
| Tin                                         | (28)<br>1400 | (24)<br>1372 | (26)<br>1150 | (26)<br>2367 | 1458      |  |  |
| Titanium                                    | 1766         | 1599         | 1713         | 1662         | 1639      |  |  |
| Vanadium<br>Zinc                            | 14           | 14           | 13           | 25           | 20        |  |  |
|                                             | 14           | 14           | 10           | 20           | 20        |  |  |
| Halogens<br>Chlorine                        | 19           | 45           | 13           | 32           | 74        |  |  |
| Fluorine                                    | 11           | 10           | 17           | 12           | 10        |  |  |
| Linomie                                     | . 11         | 10           | 17           | 1-           | 1,0       |  |  |

Pb, 20 other elements were also determined. SW-846 method 7470 was used to prepare samples for determining of Hg by cold vapour atomic absorption (AA). Methods 7061 and 7741 were used for sample preparation for determination of As and Se, respectively, by hydride generation AA. A Perkin-Elmer 500 AA spectrometer, equipped with a MHS-20 Mercury/Hydride system was used for determining the three regulated constituents.

Volatile organics

The leachates from the TCLP extraction were analyzed for a

series of polynuclear aromatics. The procedure used was the adaptation of the EPA Method 525.1. This procedure was modified to use a fused silica capillary column with a flame ionization detector as developed by Supelco Corporation in conjunction with EPA. The ENVI-18 solid phase extraction cartridges are a specially cleaned organic phase, an improvement to the original phases used in EPA 525.1 development. Sensitivity of the method was confirmed by the analysis of known amounts of several polynuclear compounds. The average level of detection was estimated to be 2.1 ppm.

#### RESULTS AND DISCUSSION

All results shown in brackets in Tables 3,4 and 5 indicate the element is lower than the value listed. For example, the concentrations of lead and cadmium for all leachates listed in Table 4 are lower than 0.003 and 0.001 ppm, respectively.

#### Characterization of cokes

Proximate and ultimate analyses (Table 2) indicate that the composition of the samples exhibited little change over the years. Interestingly enough, rather low oxygen content, in spite of a prolonged weathering, indicates a resistance of the coke to oxidation. In similar situations, the uptake of oxygen by coal can be significant. This observation confirms a low prob-

ability of self-ignition of the coke samples (8).

The content of elements including the regulated elements (Table 1) and halogens in the coke samples is shown in Table 3. Compared with other carbonaceous solids, e.g., some coals, these values are low. For example, there is no detectable mercury content. The content of halogens is low as well. Relatively high contents of vanadium, nickel and titanium are typical for cokes derived from bitumen. It is expected that at least vanadium and nickel could be added to the list of the regulated metals in the future.

Leachability of Inorganic Elements

Results on leachability of the cokes are shown in Table 4. Mercury is not shown in Table 4. This analysis was not performed because no mercury was detected in the cokes. Also, it can be calculated from the results in Table 3 and volume of the leaching solutions used for TCLP that even if all cadmium and selenium present in cokes were leached out, their amounts in leachates would be significantly lower than their regulatory levels. It is quite obvious that a total leaching of these metals from coke is impossible to achieve. Thus, based on the regulatory levels of the regulated elements (Table 1), all five samples of the coke can be classified as virtually non-leachable. Concentrations of the elements which may be regulated in the future, i.e., vanadium, nickel, zinc, beryllium, copper, strontium, cobalt and other are also low.

The results on leachability performed for pH=2 and pH=4 as well as for deionized water are shown in Table 5. The leachate which was spiked by some priority elements is also included to indicate the reliability of the method. All currently regulated elements were unaffected by increasing the severity of leaching, i.e., changing pH from about 7 to 2. It is emphasized that the pH=2 represents a very severe environment. It is unlikely that such an environment can be encountered in stockpiles. The concentrations of iron, nickel, vanadium and manganese in the leachate obtained at pH=2 were significantly higher than those at pH=4, but still very low to be of any concern.

Leachability of Volatile Organics

No organic substances could be detected in the leachates inspite of a high sensitivity of the instrument employed. Thus, little difference was observed between the trace of the extract from the extraction of the deionized water (blank) and that of the leachates. The only peaks observed were the same as those of trace amounts of

| Regulatory   Elements   Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Table 4 Analysis of leachates (ppm). |        |                       |        |                                 |    |           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|-----------------------|--------|---------------------------------|----|-----------|--|
| Elements         Level           Arsenic         5         (0.23)         (0.23)         (0.23)         (0.23)         1.97           Barium         100         (0.05)         (0.05)         (0.05)         (0.05)         (0.05)           Cadmium         1         (0.001)         (0.001)         (0.001)         (0.001)         (0.001)         1.55           Chromium         5         (0.016)         (0.016)         (0.016)         (0.016)         1.79         (           Lead         5         (0.003)         (0.003)         (0.003)         (0.003)         (0.003)         1.81         (            Mercury         0.2         ND         ND         ND         ND         ND           Selenium         1         (0.005)         (0.005)         (0.005)         (0.005)         (0.005)         (0.005)         (0.005)         (0.005)         (0.005)         (0.005)         (0.005)         (0.005)         (0.005)         (0.005)         (0.005)         (0.005)         (0.005)         (0.005)         (0.005)         (0.005)         (0.005)         (0.005)         (0.005)         (0.005)         (0.005)         (0.005)         (0.005)         (0.005)         (0.005)         (0.005)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 SPIKE                              |        |                       |        | 1                               |    |           |  |
| Arsenic         5         (0.23)         (0.23)         (0.23)         (0.23)         (0.23)         (0.23)         (0.23)         (0.23)         (0.23)         (0.23)         (0.23)         (0.05)         (0.05)         (0.05)         (0.05)         (0.05)         (0.05)         (0.05)         (0.05)         (0.05)         (0.05)         (0.05)         (0.05)         (0.005)         (0.001)         (0.001)         (0.001)         (0.001)         (0.001)         (0.001)         (0.001)         (0.001)         (0.001)         (0.001)         (0.001)         (0.001)         (0.001)         (0.001)         (0.001)         (0.001)         (0.001)         (0.001)         (0.001)         (0.001)         (0.001)         (0.001)         (0.001)         (0.001)         (0.001)         (0.001)         (0.001)         (0.001)         (0.001)         (0.001)         (0.003)         (0.003)         (0.003)         (0.003)         (0.005)         (0.005)         (0.005)         (0.005)         (0.004)         (0.004)         (0.004)         (0.004)         (0.004)         (0.004)         (0.004)         (0.004)         (0.004)         (0.004)         (0.004)         (0.004)         (0.004)         (0.004)         (0.004)         (0.004)         (0.004)         (0.004)         (0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |        |                       |        |                                 |    |           |  |
| Barium         100         (0.05)         (0.05)         (0.05)         (0.05)         (0.05)           Cadmium         1         (0.001)         (0.001)         (0.001)         (0.001)         (0.001)         1.55           Chromium         5         (0.016)         (0.016)         (0.016)         (0.016)         1.79         (           Lead         5         (0.003)         (0.003)         (0.003)         (0.003)         1.81         (           Mercury         0.2         ND         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |        |                       |        |                                 |    |           |  |
| Cadmium         1         (0.001)         (0.001)         (0.001)         (0.001)         (0.001)         (0.001)         (0.001)         1.55         (0.001)         1.55         (0.001)         (0.001)         (0.001)         (0.001)         1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.79         (1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |        |                       |        |                                 |    |           |  |
| Chromium         5         (0.016)         (0.016)         (0.016)         (0.016)         (0.016)         1.79         (           Lead         5         (0.003)         (0.003)         (0.003)         (0.003)         (0.003)         1.81         (           Mercury         0.2         ND         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |        |                       |        |                                 |    |           |  |
| Lead         5         (0.003)         (0.003)         (0.003)         (0.003)         1.81         (           Mercury         0.2         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |        |                       |        |                                 | -  |           |  |
| Mercury         0.2         ND         A <td< td=""><td></td><td></td><td></td><td></td><td></td><td>5</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |        |                       |        |                                 | 5  |           |  |
| Selenium 1 (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.009) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005 |                                      |        |                       |        |                                 |    |           |  |
| Silver         5         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1.0)         (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |        |                       |        |                                 |    |           |  |
| Beryllium         (0.004)         (0.004)         (0.004)         (0.004)         (0.004)         (0.004)         (0.004)         (0.004)         (0.004)         (0.004)         (0.004)         (0.004)         (0.009)         (0.009)         (0.009)         (0.009)         (0.009)         (0.009)         (0.009)         (0.009)         (0.009)         (0.009)         (0.009)         (0.009)         (0.009)         (0.009)         (0.004)         (0.004)         (0.004)         (0.004)         (0.004)         (0.004)         (0.004)         (0.004)         (0.004)         (0.004)         (0.004)         (0.003)         (0.003)         (0.003)         (0.003)         (0.003)         (0.003)         (0.003)         (0.003)         (0.003)         (0.003)         (0.003)         (0.003)         (0.003)         (0.003)         (0.003)         (0.003)         (0.003)         (0.007)         (0.007)         (0.007)         (0.007)         (0.007)         (0.007)         (0.007)         (0.007)         (0.007)         (0.007)         (0.007)         (0.007)         (0.007)         (0.007)         (0.007)         (0.007)         (0.007)         (0.007)         (0.007)         (0.007)         (0.007)         (0.007)         (0.007)         (0.007)         (0.007)         (0.007)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | 1 - 1  |                       |        |                                 | 45 |           |  |
| Boron (0.09) (0.09) (0.09) (0.09) (0.09) (0.09) Calcium 12 3 17 7 7 Cobalt (0.04) (0.04) (0.04) (0.04) (0.04) Copper (0.03) (0.03) (0.03) (0.03) (0.03) Iron (0.07) (0.07) 0.09 (0.07) (0.07) Magnesium 2.3 0.4 3.8 1 1 Manganese 0.11 0.02 0.17 0.06 0.06 Molybdenum (0.017) (0.017) (0.017) (0.017) (0.017) (0.017) Nickel 0.028 0.042 0.018 0.043 0.033 Phosphorus (0.29) (0.29) (0.29) (0.29) Potassium 0.24 (0.18) 0.31 (0.18) 0.25 Strontium (0.15) (0.15) (0.15) (0.15) Tin (1.06) (1.06) (1.06) (1.06) Titanium (0.05) (0.05) (0.05) (0.05) Vanadium 0.11 0.34 0.07 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |        |                       |        |                                 | 5  |           |  |
| Calcium         12         3         17         7         7           Cobalt         (0.04)         (0.04)         (0.04)         (0.04)         (0.04)         (0.04)           Copper         (0.03)         (0.03)         (0.03)         (0.03)         (0.03)         (0.03)           Iron         (0.07)         (0.07)         0.09         (0.07)         (0.07)           Magnesium         2.3         0.4         3.8         1         1           Manganese         0.11         0.02         0.17         0.06         0.06           Molybdenum         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |        |                       |        |                                 |    |           |  |
| Cobalt         (0.04)         (0.04)         (0.04)         (0.04)         (0.04)         (0.04)           Copper         (0.03)         (0.03)         (0.03)         (0.03)         (0.03)         (0.03)           Iron         (0.07)         (0.07)         0.09         (0.07)         (0.07)           Magnesium         2.3         0.4         3.8         1         1           Manganese         0.11         0.02         0.17         0.06         0.06           Molybdenum         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |        |                       |        |                                 |    |           |  |
| Copper         (0.03)         (0.03)         (0.03)         (0.03)         (0.03)         (0.03)         (0.03)         (0.03)         (0.03)         (0.03)         (0.03)         (0.03)         (0.03)         (0.03)         (0.03)         (0.03)         (0.03)         (0.03)         (0.03)         (0.03)         (0.03)         (0.03)         (0.03)         (0.03)         (0.03)         (0.07)         (0.07)         (0.07)         (0.07)         (0.07)         (0.07)         (0.07)         (0.07)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |        | 1000                  |        |                                 |    |           |  |
| Iron   (0.07) (0.07) (0.09) (0.07) (0.07)   Magnesium   2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |        |                       |        |                                 |    |           |  |
| Magnesium         2.3         0.4         3.8         1         1           Manganese         0.11         0.02         0.17         0.06         0.06           Molybdenum         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.029)         (0.029)         (0.029)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,                                    | (/     |                       | ,      |                                 |    | Copper    |  |
| Manganese         0.11         0.02         0.17         0.06         0.06           Molybdenum         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |        |                       |        |                                 |    |           |  |
| Molybdenum         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.017)         (0.033)           Phosphorus         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29) </td <td></td> <td>10.00</td> <td></td> <td></td> <td></td> <td></td> <td>Magnesium</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      | 10.00  |                       |        |                                 |    | Magnesium |  |
| Nickel         0.028         0.042         0.018         0.043         0.033           Phosphorus         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)           Potassium         0.24         (0.18)         0.31         (0.18)         0.25           Strontium         (0.15)         (0.15)         (0.15)         (0.15)         (0.15)           Tin         (1.06)         (1.06)         (1.06)         (1.06)         (1.06)           Titanium         (0.05)         (0.05)         (0.05)         (0.05)         (0.47)           Vanadium         0.11         0.34         0.07         0.47         0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |        |                       |        |                                 |    | Manganese |  |
| Phosphorus         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.29)         (0.25)         (0.15)         (0.15)         (0.15)         (0.15)         (0.15)         (0.15)         (0.15)         (0.15)         (0.15)         (0.15)         (0.15)         (0.15)         (0.15)         (0.15)         (0.15)         (0.15)         (0.15)         (0.15)         (0.15)         (0.15)         (0.15)         (0.15)         (0.15)         (0.15)         (0.15)         (0.15)         (0.15)         (0.15)         (0.15)         (0.15)         (0.15)         (0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |        |                       |        | ,                               |    |           |  |
| Potassium         0.24         (0.18)         0.31         (0.18)         0.25           Strontium         (0.15)         (0.15)         (0.15)         (0.15)         (0.15)           Tin         (1.06)         (1.06)         (1.06)         (1.06)         (1.06)           Titanium         (0.05)         (0.05)         (0.05)         (0.05)         (0.45)           Vanadium         0.11         0.34         0.07         0.47         0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |        |                       |        |                                 |    |           |  |
| Strontium         (0.15)         (0.15)         (0.15)         (0.15)         (0.15)           Tin         (1.06)         (1.06)         (1.06)         (1.06)         (1.06)           Titanium         (0.05)         (0.05)         (0.05)         (0.05)         (0.05)           Vanadium         0.11         0.34         0.07         0.47         0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |        | ,                     |        |                                 |    |           |  |
| Tin         (1.06)         (1.06)         (1.06)         (1.06)         (1.06)         (1.06)           Titanium         (0.05)         (0.05)         (0.05)         (0.05)         (0.05)         (0.45)           Vanadium         0.11         0.34         0.07         0.47         0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      | ,      | and the second second |        |                                 |    |           |  |
| Titanium (0.05) (0.05) (0.05) (0.05) (0.45) Vanadium 0.11 0.34 0.07 0.47 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      | , , ,  |                       |        |                                 |    | Strontium |  |
| Vanadium 0.11 0.34 0.07 0.47 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |        | ,                     |        |                                 |    |           |  |
| Validation (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      | ,      | ,                     |        |                                 |    |           |  |
| Zinc $(0.05)$ $(0.05)$ $(0.05)$ $(0.05)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |        |                       |        | The second second second second |    |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.05)                               | (0.05) | (0.05)                | (0.05) | (0.05)                          |    | Zinc      |  |
| ND - Not determined.<br>4SPIKE - Leachate 4 was spiked with 2 ppm of As, Pb, Cr and Cd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |        |                       |        |                                 |    |           |  |

### Coke leachate, cont'd.

| 1                    | Table 5 Effect | of pH on I | eachabilit | y (ppm). |          |  |
|----------------------|----------------|------------|------------|----------|----------|--|
| PH                   |                | Water      | PH 4       | PH 2     | Drainage |  |
|                      | Regulatory     |            |            |          |          |  |
| Elements             | Level          |            |            |          |          |  |
| Arsenic              | 5              | (0.23)     | (0.23)     | (0.23)   | (0.23)   |  |
| Barium               | 100            | (0.05)     | (0.05)     | (0.05)   | (0.05)   |  |
| Cadmium              | 1              | (0.001)    | (0.001)    | (0.001)  | (0.001)  |  |
| Chromium             | 5              | (0.016)    | (0.016)    | (0.016)  | (0.016)  |  |
| Lead                 | 5              | (0.003)    | (0.003)    | (0.003)  | (0.003)  |  |
| Mercury              | 0.2            | ND         | ND         | ND       | ND       |  |
| Selenium             | 1              | (0.005)    | (0.005)    | (0.005)  | (0.005)  |  |
| Silver               | 5              | (1.0)      | (1.0)      | (1.0)    | (1.0)    |  |
| Beryllium            |                | (0.004)    | (0.004)    | (0.004)  | (0.004)  |  |
| Boron                |                | (0.09)     | (0.09)     | 0.28     | 1.5      |  |
| Calcium              |                | (0.11)     | 0.7        | 1.3      | 35       |  |
| Cobalt               |                | (0.04)     | (0.04)     | (0.04)   | (0.04)   |  |
| Copper               |                | (0.03)     | (0.03)     | (0.03)   | (0.03)   |  |
| Iron                 |                | (0.07)     | (0.07)     | 0.09     | 1.6      |  |
| Magnesium            |                | (0.05)     | 0.1        | 0.3      | 16       |  |
| Manganese            |                | (0.01)     | 0.03       | 0.16     | (0.07)   |  |
| Molybdenum           |                | (0.017)    | (0.017)    | (0.017)  | 0.7      |  |
| Nickel               |                | (0.018)    | 0.029      | 0.16     | (0.018)  |  |
| Phosphorus           |                | (0.29)     | (0.29)     | (0.29)   | (0.29)   |  |
| Potassium            |                | (0.18)     | (0.18)     | (0.18)   | 4.2      |  |
| Strontium            |                | (0.15)     | (0.15)     | (0.15)   | 0.3      |  |
| Tin                  |                | (1.06)     | (1.06)     | (1.06)   | (1.06)   |  |
| Titanium             |                | (0.05)     | (0.05)     | (0.05)   | (0.05)   |  |
| Vanadium             |                | 0.04       | 0.03       | 0.55     | (0.03)   |  |
| ND - Not determined. |                |            |            |          |          |  |
|                      |                |            |            |          |          |  |

contaminants detected in the extraction agent (methylene chloride). It is emphasized that the change of pH (from about 7 to 2) had no effect on the leachability of the organic constituents. Thus, it may be concluded with certainty that, with respect to the leachability of organic constituents, all tested samples of coke are virtually non-leachable under

all conditions employed during the analysis. The submitted sample of the drainage water was also analyzed. In this case, a single peak representing an unknown substance in quantities smaller than 1 ppm was found. No effort was made to identify this peak. This single peak was not found in any leachate. Nevertheless, the content of this compound is very low and may be well below regulatory limits.

#### Conclusions

The present results confirm that the coke produced during the fluid coking operation in Syncrude is virtually non-leachable residue, therefore its disposal in landfills poses no hazard to the environment and underground waters. In view of the stringent environmental regulations, processes which can convert heavy feedstocks to liquid fuels without generating solid hazardous wastes are considered to be the processes of the future (9). The fluid coking process in Syncrude is one of such processes.

#### Acknowledgements

Bill Hunter of Environmental Services and the Coker 2000 team at Syncrude Canada Ltd. provided helpful discussion. The analytical laboratory team at CANMET/ERL in Ottawa carried out the experimental evaluations.

References available upon written request.

#### REFERENCES

- Hyndman, A.W. and Liu, J.K. Proc. of the China-Canada Heavy Oil Technology Symposium, Zhou-Zhou, China, AOSTRA (1987), paper # 50
- Anthony, E.J., Becker, H.A., Code, R.K., McCleave, R.W. and Stephenson, J.R. Proc. Ninth Intern. Conf. Fluid Bed Combustion, vol. 1, 322, (1987).
- 3. EPRI Electric Power Research Institute Proc.: Ninth Intern. Ash Use Symposium, Orlando, Florida, January 22-25, 1991.
- "Coal Gasification Implementation Development Program", Bechtel Corp. Report for CEA Can. Electr. Assoc. & Nova Scotia Power Inc. 1994.
- Hjalmarsson A.-K. "Interactions in emissions control for coal-fired plants" IEACR/47, March 1992.
- Elkin, H.F., Swain, E.J. and Bruce, R.G. "Methodology of Estimating Expenditures Required by US Petroleum Refiners to Meet Environmental Regulations: 1991 - 2010, 1993, NPRA Annual Meeting, March 21-24, 1993, San Antonio, Texas.
- "Export and Import of Hazardous Wastes Regulations"; User's Guide to Hazardous Wastes Classification, Environment Canada, 1993.
- 8. Furimsky, E. 1988 Fuel Proc. Technol., 19, 203.
- 9. Tamburano, F. Hydroc. Proc., Oct. 1994, 77.